Electronic transport properties of graphene nanoribbons
نویسندگان
چکیده
We will present brief overview on the electronic and transport properties of graphene nanoribbons focusing on the effect of edge shapes and impurity scattering. The low-energy electronic states of graphene have two non-equivalent massless Dirac spectrum. The relative distance between these two Dirac points in the momentum space and edge states due to the existence of the zigzag type graphene edges are decisive to the electronic and transport properties of graphene nanoribbons. In graphene nanoribbons with zigzag edges (zigzag nanoribbons), two valleys related to each Dirac spectrum are well separated in momentum space. The propagating modes in each valley contain a single chiral mode originating from a partially flat band at band center. This feature gives rise to a perfectly conducting channel in the disordered system, if the impurity scattering does not connect the two valleys, i.e. for long-range impurity potentials. Ribbons with short-range impurity potentials, however, through intervalley scattering display ordinary localization behavior. On the other hand, the lowenergy spectrum of graphene nanoribbons with armchair edges (armchair nanoribbons) is described as the superposition of two non-equivalent Dirac points of graphene. In spite of the lack of well-separated two valley structures, the single-channel transport subjected to long-ranged impurities is nearly perfectly conducting, where the backward scattering matrix elements in the lowest order vanish as a manifestation of internal phase structures of the wavefunction. For multi-channel energy regime, however, the conventional exponential decay of the averaged conductance occurs. Symmetry considerations lead to the classification of disordered zigzag ribbons into the unitary class for long-range impurities, and the orthogonal class for short-range impurities. Since the inter-valley scattering is not completely absent, armchair nanoribbons can be classified into orthogonal universality class irrespective of the range of impurities. Electronic transport properties of graphene nanoribbons 2
منابع مشابه
Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes
We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...
متن کاملElectronic properties of hydrogenated porous Graphene based nanoribbons: A density functional theory study
The structural and electronic properties of the hydrogenated porous graphene nanoribbons were studied by using density functional theory calculations. The results show that the hydrogenated porous graphene nanoribbons are energetically stable. The effects of ribbon type and ribbon width on the electronic properties of these nanoribbons were investigated. It was found that both armchair and zigz...
متن کاملQuantum current modelling on tri-layer graphene nanoribbons in limit degenerate and non-degenerate
Graphene is determined by a wonderful carrier transport property and high sensitivityat the surface of a single molecule, making them great as resources used in Nano electronic use.TGN is modeled in form of three honeycomb lattices with pairs of in-equivalent sites as {A1, B1},{A2, B2}, and {A3, B3} which are located in the top, center and bottom layers, respectively. Trilayer...
متن کاملElectronic and Optical Properties of the Graphene and Boron Nitride Nanoribbons in Presence of the Electric Field
Abstract: In this study, using density functional theory and the SIESTA computationalcode, we investigate the electronic and optical properties of the armchair graphenenanoribbons and the armchair boron nitride nanoribbons of width 25 in the presence of atransverse external electric field. We have observed that in the absence of the electricfield, these structures are se...
متن کاملStacking dependent electronic structure and transport in bilayer graphene nanoribbons
The stacking-dependent electronic structure and transport properties of bilayer graphene nanoribbons suspended between gold electrodes are investigated using density functional theory coupled with non-equilibrium Green’s functional method. We find substantially enhanced electron transmission as well as tunneling currents in the AA stacking of bilayer nanoribbons compared to either single-layer ...
متن کامل